

1

Dynamic Modifications of Object-Oriented Specifications

M.Erradi, G.v. Bochmann, I. Hamid

Département d'Informatique et de Recherche
Opérationnelle

Université de Montréal
C.P. 6128, Succ. "A", Montréal,

P.Q., Canada, H3C-3J7
E-mail: {erradi bochmann hamid} @iro.umontreal.ca

Abstract:

RMondel (Reflective Mondel) is a reflective object-oriented specification language
developed for the description of distributed systems. The objective of RMondel is to
allow the development of dynamically modifiable specifications. We will show how the
features of the language are useful for the modification and construction of valid
specifications. Therefore, the user of this language can modify certain specification by
adding or modifying objects and types to get a new adapted specification. A predefined
set of constraints, allow the construction of valid specification. RMondel gives an
interesting framework, based on formal semantics, to develop user friendly interfaces and
CASE tools to construct and eventually modify specifications. We have illustrated our
approach using a switch system example.

2

1. Introduction and Motivations

Recently, an object-oriented approach to programming and designing complex software
systems has received tremendous attention in several disciplines of computer science
such as programming languages, databases, distributed systems, and operating systems.
Object-oriented programming offers several important advantages over control-oriented
programming [Meye 88]. Objects are collection of operations that share a state. The
operations determine the calls (messages) to which the object can respond, while the
shared state is hidden from the outside and is accessible only to the object's operations.
Another advantage of object-oriented programming is the notion of class (type) and
inheritance. Classes serve as templates for objects creation. Inheritance allows the reuse
of behavior of a class in the definition of new classes. Subclasses of a class inherit the
operations of their parent class and may add new operations and new attributes.

We have developed a new object-oriented specification language, called Mondel1 [Boch
90] that has important concepts as a specification language to be applied in the area of
distributed systems. The motivations behind Mondel are: (a) writing system descriptions
at the specification and design level, (b) supporting concurrency as required for
distributed systems, (c) supporting persistent objects and transaction facilities, and (d)
supporting the object concept. Presently, our language Mondel has been used for the
specification of problems related to network management [Boch 91a] and other
distributed applications [Boch 91b].

In a wide spectrum of applications, system specifications require modifications to
accommodate evolutionary change, particularly for those systems with long expected
lifetime. They need to evolve along with changes of human needs, technology and/or the
application environment. The changes may require modifications of certain functions
already provided by the system, or some extension introducing new functions. In general,
evolutionary changes are difficult to accommodate because they cannot be predicted at
the time the system is designed. So, systems should be sufficiently flexible to permit
arbitrary, incremental changes. To support the construction of dynamically modifiable
systems, written in Mondel, we need to have access to, and modify the specification and
the implementation of the system during run time.

1 Mondel stands for Montreal description language which was developed within a CRIM
(Centre de Recherche Informatique de Montréal) / BNR (Bell Northern Research)
project.

3

The object oriented approach is known by its flexibility for system construction. This is
partly due to the inheritance property that permit class reuse and incremental
construction of systems. However, it is not possible to introduce arbitrary changes in a
given system specification. Recently, in object-oriented languages, a new concept called
reflection, has gained wider attention as confirmed by the first and second workshops on
reflection and metalevel architectures in object-oriented programming [Work 90, Work
91] held in conjunction with OOPSLA'90 and 91. Reflection is the capability of a system
to reason and act upon itself. A language is called reflective if it uses the same structures
to represent data and programs. In conventional systems, computation is performed only
on data that represent entities of an application domain. In contrast, a reflective system
contains another type of data that represent the structural and computational aspects of
itself. The original model of reflection was proposed in [Maes 87] following Smith's
earlier work [Smit 82], where a meta-object is associated with each object in the system
to represent information about the implementation and the interpretation of the object.

To achieve our goal that is the construction of dynamically modifiable specifications and
implementations, we define a reflective object oriented language called RMondel,
directly based on the Mondel language. Reflection in RMondel is supported by two
fundamental features of reflection related to object oriented languages which are:
Structural Reflection (SR) and Computational Reflection (CR). For the SR we consider
that a type (i.e., class) is an object and types are instances of other types, also called
metatypes. Also, we address the reflectivity for object attributes, operations (methods)
and behaviors. For CR, a meta-object, called interpreter object, is associated with each
object at creation time. An interpreter object deals with the computational aspect of its
associated object. Specialized interpreters can be defined for monitoring the behavior of
objects, or for dynamically modifying their behavior.

In this paper, we focus mainly on structural reflection. With respect to computational
reflection we consider that the objects in the system share one interpreter. The main
issue is to show how structural reflection can be useful to change dynamically a
specification. The need for validation of the changes to maintain system consistency is
also discussed. The paper is organized as follows. Section 2 gives an overview of the
original language Mondel and its important characteristics. Section 3 explains the
architecture, semantics and the interpreter of RMondel. Section 54 show, through an
example, how a specification written in RMondel can be dynamically modified to satisfy
new requirements.

4

2. Mondel Overview

The Mondel language [Boch 90] is object-oriented with certain particular features, such
as multiple inheritance, type checking, rendezvous communication between objects, the
possibility of concurrent activities performed by a single object, object persistence and
the concept of transaction. Mondel has also a formal semantics, expressed by means of a
translation into a state transition system. An object is an instance of a type definition that
specifies the properties that are satisfied by all its instances. Each Mondel object has an
identity, a certain number of named attributes (this means that each object instance of
that type will have fixed references to other object instances, one for each attribute), and
acceptable operations which are externally visible and represent actions that can be
invoked by other objects.

An executable system specification in Mondel, consists of a set of objects that run in
parallel. Each object has its individual behavior which provides certain details as
constraints on the order of the execution of operations by the object, and determines
properties of the possible returned results of these operations. Among the actions related
to the execution of an operation, the object may also invoke operations on other objects.
Basically, communication between objects is synchronous, based on remote procedure
call or rendezvous mechanism. An operation call is syntactically represented by the “!”
operator. For instance in the statement “c!failure” of Figure 1, “c” designates the called
object, and “failure” is an operation defined within the type (Controller) of “c”.

In Figure 1 we give an example of a Mondel specification. The described example
consists of a system switch composed of unreliable pieces of equipment and a controller.
Initially the system is in a working state. When a failure occurs, the system status
changes to the failed state. The system remains in the failed state until the failed
equipment is repaired. Initially an equipment is in a working state. When a failure occurs,
a signal (operation call) is sent to the controller and the equipment enters a failed state.
This example will be used trough out the paper to illustrate our approach for the dynamic
modification of specifications.

5

1 type controller = object with
2 operation
3 failure; repair;
4 behavior
5 working;
6 where
7 Procedure working =
8 accept failure do
9 failed;
10 end;
11 endproc working

12 Procedure failed =
13 accept repair do
14 working;
15 end;
16 endproc failed
17 endtype controller

18 type equip = object with
19 c : controller;
20 behavior
21 working;
22 where
23 Procedure working=
24 c ! failure; failed;
25 endproc working

26 Procedure failed=
27 c ! repair; working;
28 endproc failed
29 endtype equip

 Figure 1: A Mondel specification example

3. RMondel Architecture

To support the dynamic modification of objects structure and their behavior, we
developed RMondel, a reflective version of Mondel, to provide a framework for the
construction of flexible systems specifications. In this section, we will show the
architecture of RMondel, and we describe its components. The RMondel system consists
in a User Interface, a translator, a set of constraints, the kernel types, and an RMondel
interpreter as shown in Figure 2. The user interface allows the user to compose his new
specification and eventually introduce changes to such specification. The translator takes
an RMondel specification and produces a set of RMondel objects according to RMondel
semantics [Erra 90].

To maintain the system in a consistent state, the RMondel interpreter uses a set of

predefined static constraints that define the consistency requirements of the type lattice

and those which maintain the type-instance relationship. Also, the interpreter uses a set of

predefined kernel objects such as TYPE and OBJECT described in Section 3.2. Because

in RMondel the attributes, the operations, and the statements (behavior) of an object are

also objects, then the predefined kernel objects are initially existent to avoid a circular

definition. It is important to mention that the RMondel system can be used for the

construction of specifications as well as for the modification of an existing specification.

6

RMondel Specification

Change Specification

Translator

RMondel Interpreter

Kernel
Objects

Static ConstraintsRMondel Objects

Semantic rules

User Interface

Figure 2: RMondel Architecture

The RMondel interpreter is based on a formal dynamic semantics definition. The dynamic

semantics associates a meaning to the valid language sentences. To define the formal

semantics of RMondel we adopted the operational approach [Plot 81] based on transition

systems. An important use of formal semantics lies in the verification of the correctness

of a specification [Barb 90]. Formal semantics is necessary for system refinement or

implementation, and development of test cases. Also, it can be used for the generation of

a language interpreter from the rules that constitute the operational definition of the

language. Details on RMondel semantic rules are given in [Erra 90]. In the following

sections we describe the components of RMondel system shown in Figure 2. Let us first

show the structure of RMondel objects, to help the understanding of the other sections.

3.1. Object Structure

In RMondel, the structure of an object is considered as a finite set of attributes
represented by pairs. Each attribute is represented by a pair (Nameattri , Idattri) which is
a substitution (binding) assigning an object identifier (Idattri) to an attribute name
(Nameattri). In the following, we will use the term "attribute" to designate such a couple.

We have two types of attributes: initial attributes and effective attributes. The "initial
attributes" are:

7

 - The unique object identifier, named ObjectId, which is commonly known as "self", is
generated automatically. For the sake of readability we will consider that object
identifiers, for type objects, are constructed by means of the type name prefixed by "Id"
(i.e., the type object equip of Figure 1 is identified by Idequip).
- The identifier of the object type, named MyType, which is the type of the created object,
and
- The identifier of the object behavior, named State, which represents the initial behavior
of the created object. The value of the State attribute can change as the execution, of the
object's behavior, evolves. It is important to mention that an object's behavior is also an
object.

The "effective attributes", are separately created by the NewAttr operation defined in the
OBJECT type which defines the common behavior of each object in the system.

These two kinds of attributes, initial attributes and effective attributes, constitute the
explicit definition of an object in the following form:
 o = <(ObjectId,Ido),(MyType,Idtype), (State,Idbeh), {...,(Nameattri,Idattri),..}>
where Ido, Idtype, and Idbeh designate the initial attributes of the object o. The set
{...,(Nameattri,Idattri),..} designates the set of the effective attributes of o.

3.2. The Kernel Type Specifications

The kernel objects constitute a database of RMondel predefined objects that are the basis
of RMondel architecture. The structure of RMondel is supported by an instantiation and
an inheritance graphs. The instantiation graph represents the "instance of" relationship,
and the inheritance graph represents the "subtype of" relationship. The objects TYPE and
OBJECT are the respective roots of these two graphs. In the following we give the
structure of these objects. Note that other kernel objects, such as those representing the
different statements of the language, are part of the kernel objects database. For the lack
of space, we describe here only the TYPE and OBJECT objects.

3.2.1. The TYPE Object

TYPE initially exists in the system, it defines the behavior for types object, as for
instance type equip of Figure 1. The TYPE object holds the attributes TypeName and
Statdef which refer to the name of a type, and the statements defined in such a type
respectively, as shown in Figure 3. The TYPE object definition contains also the New
operation which creates object instances. We assume that the TYPE object exists
initially as an instance of itself. The structure of the TYPE object is:
 <(ObjectId,IdTYPE),(MyType,IdTYPE), (State,S), {(TypeName,"TYPE"), (Statdef,IdS1)}>;

8

Where IdS1 is an object reference to the specified behavior within the TYPE type
definition, among others, we find the New operation definition. (State,S)corresponds to
the initial behavior of the TYPE object. The TYPE object is useful for the creation of type
definitions as well as their instances.

type TYPE = OBJECT with

 TypeName : string;

 Stat : Statement;

 operation

 New : OBJECT; {The type OBJECT is defined below }

 <: (t : TYPE): boolean; { the conformance relation: it checks if self conforms to t. The “<:”

 relation is the closure of the inheritance relation. }

 invariant

 { We define here, the constraints which must hold to maintain the system in a consistent state.

 These constraints define the consistency requirements of the type lattice which corresponds to

the

 static semantics rules checked by the Mondel compiler [Erra 90].}

 behavior

 { We specify here, in which order the operations, provided by an object of type TYPE, can be

 executed and what are the possible returned results. }

endtype TYPE

Figure 3. The definition of TYPE

3.2.2. The OBJECT object

OBJECT is the most general type. It describes the common characteristics of all objects
(types and instances). Each object is characterized by its unique identifier, its type, its
effective attributes (binding) and its behavior. Also it provides the NewAttr operation for
attribute instances creation. OBJECT is the root of the inheritance graph, and it is
initially defined in the form:

<(ObjectId,IdOBJECT),(MyType,IdTYPE), (State,St), {(TypeName,"OBJECT"), (Statdef,IdS2)}>;

Where IdS2 is a reference to the specified behavior within the OBJECT object. It
corresponds to NewAttr operation definition. (State,St)corresponds initially to the
OBJECT object behavior, which is the same as for TYPE because OBJECT is an instance
of TYPE.

3.3. RMondel Objects

9

The attributes, operations and the statements of an object (called master object) are also
objects (called fine grain objects) according to RMondel semantics definition. In the
remaining of the paper we make the distinction between master objects and fine grain
objects only if necessary, otherwise we use ‘object’ to designate both. The fine grain
objects are linked to their master object by a reference called “Appears-In”.

Let us consider the example of Figure 1, the type equip, as a master object, is represented
by the following structure that corresponds to RMondel objects internal representation.
Such a representation is generated by the Translator of Figure 2.
(1) < (ObjectId,Idequip), (MyType, IdTYPE), (State,IdTYPEBehavior), {(TypeName,"equip"),

 (Statdef, IdProCallWorking)}>;

This object (1) corresponds to the type specification “equip”, it is an instance of the
TYPE object (MyType, IdTYPE), its state is the same as the TYPE object
(State,IdTYPEBehavior), its name is “equip” (TypeName,"equip"), and the behavior definition
within the type “equip” is an object referred to by IdProCallWorking.

The fine grain objects associated to the object “equip” are:
(1) <(ObjectId,Idc), (MyType, IdAttribute),.., {(AttrName,"c"), (AttrType,

IdController),(AppearsIn,Idequip)}> ;

(2) <(ObjectId,IdWorking),(MyType,IdProcedure),...,{ (ProcName,”Working”),(AppearsIn,Idequip) } >;

(3) <(ObjectId,IdFailed),(MyType,IdProcedure),...,{ (ProcName,”failed”),(AppearsIn,Idequip) } >;

The object in line (1) corresponds to the attribute definition named “c” of type
“Controller”. We remark that this object is linked to its master object by the link
“AppearsIn” (AppearsIn,Idequip) . In line (2) and (3) we find two objects that correspond to
the procedures working and failed respectively. This gives a powerful flexibility to
RMondel to allow dynamic modification of a specification. A change to a specification,
will be introduced by adding and/or deleting objects.

In the previous sections we have described the components of RMondel system. In the
following sections we show how the RMondel interpreter works, and how it facilitates the
dynamic modification of specifications.

4. Dynamic modification of RMondel specification

4.1. Support for dynamic modification of specifications

In order to allow for the construction of dynamically modifiable type specifications, we
need to have access, and to be able to modify type specifications during run-time. As has
been shown in the previous sections, types are instances of TYPE, so they are accessible like
any other object in the system. For the dynamic modification of type specifications, we need

10

to define some primitive operations within the object TYPE, which allow the modification
of a type specification. Since these operations are defined within the TYPE object, each
instance (i.e. a type specification) of such a type can accept such operations. Therefore, we
enhance the TYPE object specification as follows to include the type specification
modification operations:

type TYPE = OBJECT with

 TypeName : string;

 Stat : Statement;

operation

 New : OBJECT;

 <: (t : TYPE): boolean; {the conformance relation: it checks if self conforms to t (see Figure 3).}

 AddAttr (A:Attribute);

 DelAttr(A: AttrName);

 AddOper(O:Operation);

 DelOper(O:Operation);

 AddProc(P:Procedure);

 DelProc(P:Procedure);

 AddStat(S:Statement);

 DelStat(S:Statement);

 . . .

invariant

 { We define here, the constraints which must hold to maintain the system in a consistent state.

 These constraints define the consistency requirements of the type lattice which corresponds to

 the static semantics rules checked by the Mondel compiler.}

behavior

 { We specify here, in which order the operations, provided by an object of type TYPE, can be

 executed and what the possible returned results are. }

endtype TYPE

Figure 4: Revised definition of TYPE object

To add a new operation to a type specification T, we have to call the AddOper operation
with the specification of the added operation given as parameter value. This can be written
as: T!AddOper(O1), where O1 is an object reference to the added operation. Recall that T
was created as an instance of TYPE. The invariants defined in the invariant clause, ensures
that the semantics of such added operation is specified within the behavior clause. We
remark that the invariants defined within TYPE play an important role to maintain
consistency between all the component of a type specification. Now, after the addition of

11

the operation O1, each newly created instance of T, can accept such an operation. We will
give in the next section a simple example to illustrate our approach

4.2. Example of dynamic modifications.

To illustrate the dynamic modification of RMondel specifications, we consider here the
RMondel specification of the switch system of Figure 1. The system consists of
unreliable pieces of equipment and a controller. Initially the system is in a working state.
When a failure occurs, the system status changes to the failed state as shown in Figure 5.
The system remains in the failed state until the failed equipment is repaired. An
equipment is either in a working state or in a failed state. The RMondel specification
consists of the definition of two object types as previously shown in Figure 1.

From a practical point of view, the specification of the switch system given above is not
complete. Such a system is vulnerable, because if a failure occurs in one equipment the
system will be down until the equipment is repaired. Let us consider that we need a more
reliable system. In this case we introduce a standby equipment that will be substituted for
the failed piece of equipment; the standby then does the work of the original piece of
equipment. With this modification to the original system specification, the system can be
in a protected state when a standby is available.

The introduction of this standby equipment will involve some modification to the system
behavior as well to the piece of equipment. When a failure occurs, a switching phase
ensures the replacement of the failed equipment by the standby equipment. Two
alternatives are possible: if the standby detects no problem, the original piece of
equipment enters a failed state and the switching phase is complete. The system then
moves to the unprotected state. However, if the standby also detects a failure, the
conclusion is that the malfunction origin is not the piece of equipment. Then, the system
moves to the breakdown state. The system requires service and may be restarted in the
protected state. The system status may change from unprotected to failed if either another
piece of equipment fails or the standby fails. The system remains in the failed state until
either a piece of equipment or the standby is repaired. Figure 6 show the state transition
diagram of the new system configuration.

working failed

failure

repair

12

Figure 5: Initial system specification.

unprotected failed
failure

repair

standby repair

standby failure

protected

standby
repair

repair

switching breakdown
failure

switchsucc

switchfail

restart

Figure 6: New system specification.

Let us show how a user can construct a new specification based on the existing one. The
construction of the new system specification involves the addition of many objects and
the renaming of other objects. For instance the states protected, switching, and
breakdown, shown in the state/transition diagram of Figure 6, are specified as procedures
within RMondel specification. Such procedures must be created as new objects of the
Procedure type. The Procedure type is a predefined kernel object, not shown here for
the lack of space, for more details interested readers are refered to [Erra 90]. The
Procedure type modelizes the definition of procedures which consists of a procedure
name, a list of optional parameters, and a procedure body. The procedure working in the
initial specification (see line 7 in Figure 1) is renamed to become the procedure
unprotected as shown in line 32 of Figure 7. Also the body of the procedure working is
replaced by a new object of the Choice type as shown in line 33 of Figure 7(Choice is a
kernel type that represents the choice construct of RMondel [Erra 90]).This new object is
built out of a set of other objects that represents the statements of the different
alternatives of the choice as shown in Figure 7.

To maintain the consistency of the specification construction, a set of constraints defined
as invariants within the TYPE object specification must be satisfied. We distinguish three
categories of invariants: general invariants, type definitions invariants, and inheritance
invariants. Details on these invariants are given in [Erra 90]. For instance the “accept
switchsucc “ statement in line 23 of Figure 7, cannot be validated by RMondel system

13

while the switchsucc operation is not defined within the controller type as shown in line
5 of Figure 7. For this purpose, the user has to add the switchsucc operation definition by
using the AddOper operation defined within the TYPE object. Because the controller
type is an instance of TYPE , then it can accept the AddOper to add the switchsucc
operation to the set of defined operations.

1 type controller = object with
2 s:standby;
3 operation
4 restart; failure; standbyfail;
5 switchfail; switchsucc;
6 repair; standbyrepair;
7 behavior
8 (* initialisation *)
9 protected;
10 where

11 procedure breakdown =
12 accept restart do
13 return; protected;
14 end;
15 endproc breakdown

16 procedure protected =
17 accept failure do
18 s!failure; return; switching;
19 end;
20 endproc protected

21 procedure switching =
22 choice
23 accept switchsucc do
24 s!switchsucc; return; unprotected;
25 end;
26 or
27 accept switchfail do
28 s!switchfail; return; breakdown;
29 end;
30 end;
31 endproc switching

32 procedure unprotected =
33 choice
34 accept failure do
35 return; failed;
36 end;
37 or
38 accept standbyfail do
39 return; failed;
40 end;
41 or
42 accept repair do
43 s!repair; return;
44 protected;
45 end;
46 or
47 accept standbyrepair do
48 return; protected;
49 end;
50 end;
51 endproc unprotected

52 procedure failed =
53 choice
54 accept repair do
55 return; unprotected;
56 end;
57 or
58 accept standbyrepair do
59 return; unprotected;
60 end;
61 end;
62 endproc failed
63 endtype controller

Figure 7: modified specification

To complete the construction of the new specification of the switch system, the user must
create and add other objects that represent states (procedures) and transitions (operation
calls and acceptance). Such objects are added using the same mechanism described
above. It is important to note that all the modifications must be realized as an atomic
operation (transaction) to ensure a valid construction of the new specification. This
validity is governed by the set of predefined invariants as mentioned before. After the

14

construction of the new specification, the user can invoke a verifier to check the
correctness of the added objects behavior. This concerns the verification of certain
properties such as termination, the absence of deadlocks, and the specific properties of
the specified problem. We have a verifier developed for the verification of Mondel
specification [Barb 90]. This verifier has been considered to be adapted for RMondel
specifications.

The Mondel language has already been implemented on a Sun workstation using prolog
language. The choice of prolog was made because it was easy to translate the formal
semantic rules of Mondel to prolog predicates. A verifier based on a petri net approach is
also implemented at the University of Monreal, and a prototype of RMondel is under
development.

5. Conclusion

We have developed RMondel, a reflective concurrent object oriented specification
language, based on Mondel language designed to support the description of distributed
systems. The objective of RMondel is to allow the development of dynamically
modifiable specifications. We have shown the architecture of RMondel, and how the
features of the language are useful for the modification and construction of valid
specifications.We have illustrated through an example how the language can adapt
dynamic modifications. Therefore the user of this language can modify his/her
specification by adding new objects and types to get a new adapted specification. A
predefined set of constraints, allow the construction of valid specifications. RMondel
gives an interesting framework based on formal semantics, to develop user friendly
interfaces and adaptable CASE tools.

Acknowledgments
The authors would like to thank the Mondel group involved in the CRIM-BNR project, in
particular M. Barbeau for helpful discussions. Financial support from the IDACOM-
NSERC-CWARC industrial research chair is gratefully acknowledged.

References

[Barb 90] M. Barbeau and G. v. Bochmann, Formal verification of Mondel Object-
Oriented Specifications Using a Coloured Petri Net Technique., In preparation.

[Boch 90] G. v. Bochmann, M. Barbeau, M. Erradi, L. Lecomte, P. Mondain-Monval
and N. Williams, Mondel: An Object-Oriented Specification Language, Publication
departementale #748, Departement IRO, Université de Montréal, November 90.

15

[Boch 91a] G. v. Bochmann, L. Lecomte and P. Mondain-Monval, Formal
Description of Network Management Issues, Proc. Int. Symp. on Integrated Network
Management (IFIP), Arlington, US, April 1991, North Holland Publ., pp. 77-94.

[Boch 91b] G. v. Bochmann, S. Poirier and P. Mondain-Monval, Object-oriented
design for distributed systems: The OSI Directory example, submitted for publication.

[Erra 90] M. Erradi, Dynamically modifiable object-oriented specifications and
implementations, Ph.D. thesis in progress, département IRO, University of Montreal.

[Work 90] M. H. Ibrahim, ECOOP/OOPSLA'90 Workshop on Reflection and
Metalevel Architectures in Object-Oriented Programming, Ottawa, October 1990.

[Work 91] M. H. Ibrahim, ECOOP/OOPSLA'91 Workshop on Reflection and
Metalevel Architectures in Object-Oriented Programming, October 1991.

[Maes 87] P. Maes, Concepts and Experiments in computational reflection,
OOPSLA'87, ACM Sigplan Notices 22, 12, pp.147-155.

[Meye 88] B. Meyer, Object Oriented Software Construction, C.A.R. Hoare Series
Editor, Prentice Hall, 1988.

[Plot 81] G. D. Plotkin, A Structural Approach to Operational Semantics, Aarhus
University, Report DAIMI FN-19, 1981.

[Smit 82] B. C. Smith, Reflection and Semantics in a Procedural Programming
Language, Ph.D. Thesis, MIT, MIT/LCS/TR-272.

